Copied to
clipboard

G = C42.514C23order 128 = 27

375th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.514C23, C4.352- 1+4, (D4×Q8)⋊12C2, C4⋊C4.179D4, C84Q810C2, D8⋊C429C2, D42Q827C2, Q8⋊Q826C2, (C4×SD16)⋊63C2, C4⋊D8.13C2, C4.4D837C2, (C2×Q8).245D4, D4.39(C4○D4), D4.2D447C2, C4⋊C8.138C22, C4⋊C4.439C23, C4.79(C8⋊C22), (C4×C8).300C22, (C2×C8).119C23, (C2×C4).565C24, (C2×D8).93C22, C4⋊Q8.194C22, C8⋊C4.64C22, C2.73(Q85D4), (C2×D4).275C23, (C4×D4).204C22, (C2×Q8).259C23, (C4×Q8).196C22, C4.Q8.182C22, C2.104(D4○SD16), D4⋊C4.89C22, C41D4.102C22, C4.4D4.82C22, C22.825(C22×D4), C22.53C245C2, Q8⋊C4.210C22, (C2×SD16).174C22, C42.28C2223C2, C4.266(C2×C4○D4), (C2×C4).641(C2×D4), C2.89(C2×C8⋊C22), SmallGroup(128,2105)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.514C23
C1C2C4C2×C4C42C4×D4D4×Q8 — C42.514C23
C1C2C2×C4 — C42.514C23
C1C22C4×Q8 — C42.514C23
C1C2C2C2×C4 — C42.514C23

Generators and relations for C42.514C23
 G = < a,b,c,d,e | a4=b4=e2=1, c2=b2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=ebe=b-1, bd=db, dcd-1=a2c, ece=bc, ede=b2d >

Subgroups: 392 in 192 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C4.Q8, C4×D4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C41D4, C4⋊Q8, C4⋊Q8, C2×D8, C2×SD16, C22×Q8, C4×SD16, D8⋊C4, C84Q8, C4⋊D8, D4.2D4, Q8⋊Q8, D42Q8, C4.4D8, C42.28C22, D4×Q8, C22.53C24, C42.514C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, 2- 1+4, Q85D4, C2×C8⋊C22, D4○SD16, C42.514C23

Character table of C42.514C23

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O8A8B8C8D8E8F
 size 11114488222244444448888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-1-11-111-1-11-1111-1-1-1111-11-1-11    linear of order 2
ρ3111111111111-1-1-1-1-1-11-1-1-11-1-1-1-111    linear of order 2
ρ41111-1-1-11-111-11-11-1-1-1-111-11-11-11-11    linear of order 2
ρ51111-1-1-1-111111-111-111-1-1-1-1111111    linear of order 2
ρ61111111-1-111-1-1-1-11-11-111-1-11-11-1-11    linear of order 2
ρ71111-1-1-1-11111-11-1-11-11111-1-1-1-1-111    linear of order 2
ρ81111111-1-111-1111-11-1-1-1-11-1-11-11-11    linear of order 2
ρ91111-1-1111111-1-1-1-1-1-111-11-11111-1-1    linear of order 2
ρ10111111-11-111-11-11-1-1-1-1-111-11-11-11-1    linear of order 2
ρ111111-1-11111111111111-11-1-1-1-1-1-1-1-1    linear of order 2
ρ12111111-11-111-1-11-1111-11-1-1-1-11-111-1    linear of order 2
ρ13111111-1-11111-11-1-11-11-11-111111-1-1    linear of order 2
ρ141111-1-11-1-111-1111-11-1-11-1-111-11-11-1    linear of order 2
ρ15111111-1-111111-111-1111-111-1-1-1-1-1-1    linear of order 2
ρ161111-1-11-1-111-1-1-1-11-11-1-1111-11-111-1    linear of order 2
ρ1722220000-2-2-2-2-202-20220000000000    orthogonal lifted from D4
ρ18222200002-2-2220-2-202-20000000000    orthogonal lifted from D4
ρ19222200002-2-22-20220-2-20000000000    orthogonal lifted from D4
ρ2022220000-2-2-2-220-220-220000000000    orthogonal lifted from D4
ρ212-22-22-2000-22002i00-2i0000000-2i02i00    complex lifted from C4○D4
ρ222-22-2-22000-2200-2i002i0000000-2i02i00    complex lifted from C4○D4
ρ232-22-2-22000-22002i00-2i00000002i0-2i00    complex lifted from C4○D4
ρ242-22-22-2000-2200-2i002i00000002i0-2i00    complex lifted from C4○D4
ρ254-4-440000400-400000000000000000    orthogonal lifted from C8⋊C22
ρ264-4-440000-400400000000000000000    orthogonal lifted from C8⋊C22
ρ274-44-4000004-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2844-4-40000000000000000000-2-202-2000    complex lifted from D4○SD16
ρ2944-4-400000000000000000002-20-2-2000    complex lifted from D4○SD16

Smallest permutation representation of C42.514C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23 27 19)(2 24 28 20)(3 21 25 17)(4 22 26 18)(5 15 9 64)(6 16 10 61)(7 13 11 62)(8 14 12 63)(29 35 37 41)(30 36 38 42)(31 33 39 43)(32 34 40 44)(45 53 51 57)(46 54 52 58)(47 55 49 59)(48 56 50 60)
(1 55 27 59)(2 56 28 60)(3 53 25 57)(4 54 26 58)(5 36 9 42)(6 33 10 43)(7 34 11 44)(8 35 12 41)(13 32 62 40)(14 29 63 37)(15 30 64 38)(16 31 61 39)(17 51 21 45)(18 52 22 46)(19 49 23 47)(20 50 24 48)
(1 57 25 55)(2 60 26 54)(3 59 27 53)(4 58 28 56)(5 32 11 38)(6 31 12 37)(7 30 9 40)(8 29 10 39)(13 36 64 44)(14 35 61 43)(15 34 62 42)(16 33 63 41)(17 49 23 45)(18 52 24 48)(19 51 21 47)(20 50 22 46)
(1 37)(2 38)(3 39)(4 40)(5 56)(6 53)(7 54)(8 55)(9 60)(10 57)(11 58)(12 59)(13 46)(14 47)(15 48)(16 45)(17 43)(18 44)(19 41)(20 42)(21 33)(22 34)(23 35)(24 36)(25 31)(26 32)(27 29)(28 30)(49 63)(50 64)(51 61)(52 62)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,19)(2,24,28,20)(3,21,25,17)(4,22,26,18)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,35,37,41)(30,36,38,42)(31,33,39,43)(32,34,40,44)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (1,55,27,59)(2,56,28,60)(3,53,25,57)(4,54,26,58)(5,36,9,42)(6,33,10,43)(7,34,11,44)(8,35,12,41)(13,32,62,40)(14,29,63,37)(15,30,64,38)(16,31,61,39)(17,51,21,45)(18,52,22,46)(19,49,23,47)(20,50,24,48), (1,57,25,55)(2,60,26,54)(3,59,27,53)(4,58,28,56)(5,32,11,38)(6,31,12,37)(7,30,9,40)(8,29,10,39)(13,36,64,44)(14,35,61,43)(15,34,62,42)(16,33,63,41)(17,49,23,45)(18,52,24,48)(19,51,21,47)(20,50,22,46), (1,37)(2,38)(3,39)(4,40)(5,56)(6,53)(7,54)(8,55)(9,60)(10,57)(11,58)(12,59)(13,46)(14,47)(15,48)(16,45)(17,43)(18,44)(19,41)(20,42)(21,33)(22,34)(23,35)(24,36)(25,31)(26,32)(27,29)(28,30)(49,63)(50,64)(51,61)(52,62)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,19)(2,24,28,20)(3,21,25,17)(4,22,26,18)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,35,37,41)(30,36,38,42)(31,33,39,43)(32,34,40,44)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (1,55,27,59)(2,56,28,60)(3,53,25,57)(4,54,26,58)(5,36,9,42)(6,33,10,43)(7,34,11,44)(8,35,12,41)(13,32,62,40)(14,29,63,37)(15,30,64,38)(16,31,61,39)(17,51,21,45)(18,52,22,46)(19,49,23,47)(20,50,24,48), (1,57,25,55)(2,60,26,54)(3,59,27,53)(4,58,28,56)(5,32,11,38)(6,31,12,37)(7,30,9,40)(8,29,10,39)(13,36,64,44)(14,35,61,43)(15,34,62,42)(16,33,63,41)(17,49,23,45)(18,52,24,48)(19,51,21,47)(20,50,22,46), (1,37)(2,38)(3,39)(4,40)(5,56)(6,53)(7,54)(8,55)(9,60)(10,57)(11,58)(12,59)(13,46)(14,47)(15,48)(16,45)(17,43)(18,44)(19,41)(20,42)(21,33)(22,34)(23,35)(24,36)(25,31)(26,32)(27,29)(28,30)(49,63)(50,64)(51,61)(52,62) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23,27,19),(2,24,28,20),(3,21,25,17),(4,22,26,18),(5,15,9,64),(6,16,10,61),(7,13,11,62),(8,14,12,63),(29,35,37,41),(30,36,38,42),(31,33,39,43),(32,34,40,44),(45,53,51,57),(46,54,52,58),(47,55,49,59),(48,56,50,60)], [(1,55,27,59),(2,56,28,60),(3,53,25,57),(4,54,26,58),(5,36,9,42),(6,33,10,43),(7,34,11,44),(8,35,12,41),(13,32,62,40),(14,29,63,37),(15,30,64,38),(16,31,61,39),(17,51,21,45),(18,52,22,46),(19,49,23,47),(20,50,24,48)], [(1,57,25,55),(2,60,26,54),(3,59,27,53),(4,58,28,56),(5,32,11,38),(6,31,12,37),(7,30,9,40),(8,29,10,39),(13,36,64,44),(14,35,61,43),(15,34,62,42),(16,33,63,41),(17,49,23,45),(18,52,24,48),(19,51,21,47),(20,50,22,46)], [(1,37),(2,38),(3,39),(4,40),(5,56),(6,53),(7,54),(8,55),(9,60),(10,57),(11,58),(12,59),(13,46),(14,47),(15,48),(16,45),(17,43),(18,44),(19,41),(20,42),(21,33),(22,34),(23,35),(24,36),(25,31),(26,32),(27,29),(28,30),(49,63),(50,64),(51,61),(52,62)]])

Matrix representation of C42.514C23 in GL8(𝔽17)

11000000
1516000000
0161150000
101160000
000016000
000001600
000000160
000000016
,
160000000
016000000
001600000
000160000
00000100
000016000
00001112
00000161616
,
1010100000
1460150000
1610730000
10117110000
00004911
0000813016
00001313510
000004812
,
1010100000
081520000
1710140000
10160000
00001381616
0000813016
000098120
0000413913
,
00100000
0160150000
10000000
00010000
00000010
000016161615
00001000
00000001

G:=sub<GL(8,GF(17))| [1,15,0,1,0,0,0,0,1,16,16,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,1,0,1,16,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16],[10,14,16,10,0,0,0,0,10,6,10,11,0,0,0,0,1,0,7,7,0,0,0,0,0,15,3,11,0,0,0,0,0,0,0,0,4,8,13,0,0,0,0,0,9,13,13,4,0,0,0,0,1,0,5,8,0,0,0,0,1,16,10,12],[10,0,1,1,0,0,0,0,10,8,7,0,0,0,0,0,1,15,10,1,0,0,0,0,0,2,14,6,0,0,0,0,0,0,0,0,13,8,9,4,0,0,0,0,8,13,8,13,0,0,0,0,16,0,12,9,0,0,0,0,16,16,0,13],[0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,15,0,1,0,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,0,0,0,15,0,1] >;

C42.514C23 in GAP, Magma, Sage, TeX

C_4^2._{514}C_2^3
% in TeX

G:=Group("C4^2.514C2^3");
// GroupNames label

G:=SmallGroup(128,2105);
// by ID

G=gap.SmallGroup(128,2105);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,723,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=b^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*c,e*c*e=b*c,e*d*e=b^2*d>;
// generators/relations

Export

Character table of C42.514C23 in TeX

׿
×
𝔽