p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.514C23, C4.352- 1+4, (D4×Q8)⋊12C2, C4⋊C4.179D4, C8⋊4Q8⋊10C2, D8⋊C4⋊29C2, D4⋊2Q8⋊27C2, Q8⋊Q8⋊26C2, (C4×SD16)⋊63C2, C4⋊D8.13C2, C4.4D8⋊37C2, (C2×Q8).245D4, D4.39(C4○D4), D4.2D4⋊47C2, C4⋊C8.138C22, C4⋊C4.439C23, C4.79(C8⋊C22), (C4×C8).300C22, (C2×C8).119C23, (C2×C4).565C24, (C2×D8).93C22, C4⋊Q8.194C22, C8⋊C4.64C22, C2.73(Q8⋊5D4), (C2×D4).275C23, (C4×D4).204C22, (C2×Q8).259C23, (C4×Q8).196C22, C4.Q8.182C22, C2.104(D4○SD16), D4⋊C4.89C22, C4⋊1D4.102C22, C4.4D4.82C22, C22.825(C22×D4), C22.53C24⋊5C2, Q8⋊C4.210C22, (C2×SD16).174C22, C42.28C22⋊23C2, C4.266(C2×C4○D4), (C2×C4).641(C2×D4), C2.89(C2×C8⋊C22), SmallGroup(128,2105)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.514C23
G = < a,b,c,d,e | a4=b4=e2=1, c2=b2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=ebe=b-1, bd=db, dcd-1=a2c, ece=bc, ede=b2d >
Subgroups: 392 in 192 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C4.Q8, C4×D4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C4⋊1D4, C4⋊Q8, C4⋊Q8, C2×D8, C2×SD16, C22×Q8, C4×SD16, D8⋊C4, C8⋊4Q8, C4⋊D8, D4.2D4, Q8⋊Q8, D4⋊2Q8, C4.4D8, C42.28C22, D4×Q8, C22.53C24, C42.514C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, 2- 1+4, Q8⋊5D4, C2×C8⋊C22, D4○SD16, C42.514C23
Character table of C42.514C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 2√-2 | 0 | 0 | 0 | complex lifted from D4○SD16 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | -2√-2 | 0 | 0 | 0 | complex lifted from D4○SD16 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23 27 19)(2 24 28 20)(3 21 25 17)(4 22 26 18)(5 15 9 64)(6 16 10 61)(7 13 11 62)(8 14 12 63)(29 35 37 41)(30 36 38 42)(31 33 39 43)(32 34 40 44)(45 53 51 57)(46 54 52 58)(47 55 49 59)(48 56 50 60)
(1 55 27 59)(2 56 28 60)(3 53 25 57)(4 54 26 58)(5 36 9 42)(6 33 10 43)(7 34 11 44)(8 35 12 41)(13 32 62 40)(14 29 63 37)(15 30 64 38)(16 31 61 39)(17 51 21 45)(18 52 22 46)(19 49 23 47)(20 50 24 48)
(1 57 25 55)(2 60 26 54)(3 59 27 53)(4 58 28 56)(5 32 11 38)(6 31 12 37)(7 30 9 40)(8 29 10 39)(13 36 64 44)(14 35 61 43)(15 34 62 42)(16 33 63 41)(17 49 23 45)(18 52 24 48)(19 51 21 47)(20 50 22 46)
(1 37)(2 38)(3 39)(4 40)(5 56)(6 53)(7 54)(8 55)(9 60)(10 57)(11 58)(12 59)(13 46)(14 47)(15 48)(16 45)(17 43)(18 44)(19 41)(20 42)(21 33)(22 34)(23 35)(24 36)(25 31)(26 32)(27 29)(28 30)(49 63)(50 64)(51 61)(52 62)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,19)(2,24,28,20)(3,21,25,17)(4,22,26,18)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,35,37,41)(30,36,38,42)(31,33,39,43)(32,34,40,44)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (1,55,27,59)(2,56,28,60)(3,53,25,57)(4,54,26,58)(5,36,9,42)(6,33,10,43)(7,34,11,44)(8,35,12,41)(13,32,62,40)(14,29,63,37)(15,30,64,38)(16,31,61,39)(17,51,21,45)(18,52,22,46)(19,49,23,47)(20,50,24,48), (1,57,25,55)(2,60,26,54)(3,59,27,53)(4,58,28,56)(5,32,11,38)(6,31,12,37)(7,30,9,40)(8,29,10,39)(13,36,64,44)(14,35,61,43)(15,34,62,42)(16,33,63,41)(17,49,23,45)(18,52,24,48)(19,51,21,47)(20,50,22,46), (1,37)(2,38)(3,39)(4,40)(5,56)(6,53)(7,54)(8,55)(9,60)(10,57)(11,58)(12,59)(13,46)(14,47)(15,48)(16,45)(17,43)(18,44)(19,41)(20,42)(21,33)(22,34)(23,35)(24,36)(25,31)(26,32)(27,29)(28,30)(49,63)(50,64)(51,61)(52,62)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,19)(2,24,28,20)(3,21,25,17)(4,22,26,18)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,35,37,41)(30,36,38,42)(31,33,39,43)(32,34,40,44)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (1,55,27,59)(2,56,28,60)(3,53,25,57)(4,54,26,58)(5,36,9,42)(6,33,10,43)(7,34,11,44)(8,35,12,41)(13,32,62,40)(14,29,63,37)(15,30,64,38)(16,31,61,39)(17,51,21,45)(18,52,22,46)(19,49,23,47)(20,50,24,48), (1,57,25,55)(2,60,26,54)(3,59,27,53)(4,58,28,56)(5,32,11,38)(6,31,12,37)(7,30,9,40)(8,29,10,39)(13,36,64,44)(14,35,61,43)(15,34,62,42)(16,33,63,41)(17,49,23,45)(18,52,24,48)(19,51,21,47)(20,50,22,46), (1,37)(2,38)(3,39)(4,40)(5,56)(6,53)(7,54)(8,55)(9,60)(10,57)(11,58)(12,59)(13,46)(14,47)(15,48)(16,45)(17,43)(18,44)(19,41)(20,42)(21,33)(22,34)(23,35)(24,36)(25,31)(26,32)(27,29)(28,30)(49,63)(50,64)(51,61)(52,62) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23,27,19),(2,24,28,20),(3,21,25,17),(4,22,26,18),(5,15,9,64),(6,16,10,61),(7,13,11,62),(8,14,12,63),(29,35,37,41),(30,36,38,42),(31,33,39,43),(32,34,40,44),(45,53,51,57),(46,54,52,58),(47,55,49,59),(48,56,50,60)], [(1,55,27,59),(2,56,28,60),(3,53,25,57),(4,54,26,58),(5,36,9,42),(6,33,10,43),(7,34,11,44),(8,35,12,41),(13,32,62,40),(14,29,63,37),(15,30,64,38),(16,31,61,39),(17,51,21,45),(18,52,22,46),(19,49,23,47),(20,50,24,48)], [(1,57,25,55),(2,60,26,54),(3,59,27,53),(4,58,28,56),(5,32,11,38),(6,31,12,37),(7,30,9,40),(8,29,10,39),(13,36,64,44),(14,35,61,43),(15,34,62,42),(16,33,63,41),(17,49,23,45),(18,52,24,48),(19,51,21,47),(20,50,22,46)], [(1,37),(2,38),(3,39),(4,40),(5,56),(6,53),(7,54),(8,55),(9,60),(10,57),(11,58),(12,59),(13,46),(14,47),(15,48),(16,45),(17,43),(18,44),(19,41),(20,42),(21,33),(22,34),(23,35),(24,36),(25,31),(26,32),(27,29),(28,30),(49,63),(50,64),(51,61),(52,62)]])
Matrix representation of C42.514C23 ►in GL8(𝔽17)
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 1 | 15 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 16 | 16 | 16 |
10 | 10 | 1 | 0 | 0 | 0 | 0 | 0 |
14 | 6 | 0 | 15 | 0 | 0 | 0 | 0 |
16 | 10 | 7 | 3 | 0 | 0 | 0 | 0 |
10 | 11 | 7 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 9 | 1 | 1 |
0 | 0 | 0 | 0 | 8 | 13 | 0 | 16 |
0 | 0 | 0 | 0 | 13 | 13 | 5 | 10 |
0 | 0 | 0 | 0 | 0 | 4 | 8 | 12 |
10 | 10 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 15 | 2 | 0 | 0 | 0 | 0 |
1 | 7 | 10 | 14 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 8 | 16 | 16 |
0 | 0 | 0 | 0 | 8 | 13 | 0 | 16 |
0 | 0 | 0 | 0 | 9 | 8 | 12 | 0 |
0 | 0 | 0 | 0 | 4 | 13 | 9 | 13 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 15 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 16 | 15 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [1,15,0,1,0,0,0,0,1,16,16,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,1,0,1,16,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16],[10,14,16,10,0,0,0,0,10,6,10,11,0,0,0,0,1,0,7,7,0,0,0,0,0,15,3,11,0,0,0,0,0,0,0,0,4,8,13,0,0,0,0,0,9,13,13,4,0,0,0,0,1,0,5,8,0,0,0,0,1,16,10,12],[10,0,1,1,0,0,0,0,10,8,7,0,0,0,0,0,1,15,10,1,0,0,0,0,0,2,14,6,0,0,0,0,0,0,0,0,13,8,9,4,0,0,0,0,8,13,8,13,0,0,0,0,16,0,12,9,0,0,0,0,16,16,0,13],[0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,15,0,1,0,0,0,0,0,0,0,0,0,16,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,0,0,0,15,0,1] >;
C42.514C23 in GAP, Magma, Sage, TeX
C_4^2._{514}C_2^3
% in TeX
G:=Group("C4^2.514C2^3");
// GroupNames label
G:=SmallGroup(128,2105);
// by ID
G=gap.SmallGroup(128,2105);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,723,346,80,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=b^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*c,e*c*e=b*c,e*d*e=b^2*d>;
// generators/relations
Export